
Proposal for OSG Application Software

Installation Service (OASIS)

Bockelman, Brian

Caballero, Jose

De Stefano, John

Hover, John

December 3, 2012

1 Introduction

This document outlines the motivation and requirements for the OSG Appli-
cation Software Installation Service (OASIS). OASIS is a value-added service
the OSG may offer to smaller VOs to assist with the distribution of VO appli-
cation software. This service would not be mandatory, but we believe would
significantly lower the barrier in becoming an OSG VO.

The basic concept is the OSG will offer an access mechanism to the VOs
software managers. The managers will be able to login and install their appli-
cation software in a central location. Once installed in the central location, the
OSG is responsible for distributing the VO software to as many sites as possible.
In exchange for using the OSG-provided service, the VO will have to abide by
a certain set of restrictions or policies such as total space used and/or number
of files.

The requirements outlined in this document cover what we believe is needed
for the first version of OASIS; we highlight requirements that may be done in
the future (implicitly, any such requirements are not part of the first version).

2 Background

The OSG has always encouraged the concept of software portability: a users
scientific application should be able to run in as many operating system en-
vironments as possible. This is typically accomplished by compiling the soft-
ware into a single static binary, or distributing all the dependencies in a tarball
downloaded by each job. However, the concept of portability runs against the

1

current Linux software distribution philosophy, and becomes increasingly diffi-
cult to achieve as the size of a scientists software stack increases. At this point,
portability is a barrier adoption of the OSG and it is not pragmatic to provide
software packaging assistance to every OSG VO.

Accordingly, it is necessary to provide a mechanism for OSG VOs to pre-
install software at the sites where they run.

Since its first release, the OSG CE has provided a directory to VOs, referred
to as “OSG APP” (for the job environment variable, $OSG APP, that points
to its runtime location), that can be used for application software installations.
The VO assumes it can create a sub-directory that it owns, install its software
into the sub-directory, and have the directory shared on the worker nodes for
a site. The OSG provides guidelines for the size and UNIX permissions of the
$OSG APP directory.

For example, CMS installs its applications inside $OSG APP/cmssoft. The
initial installation takes about 10GB of disk space, and each subsequent install
can take another 1GB. Only CMS has the ability to write into $OSG APP/cmssoft.

The $OSG APP model has shown to have a few issues:

• It provides no enforcement or allocation mechanism. A single badly-

behaved VO can utilize all the space available, denying service to other
good VOs. When this happens, the local site has to make decisions about
how to clean up the shared space. In other words, no quota policies can
be enforced.

– The site likely has an internal prioritization for one or two VOs. An
ATLAS site will give ATLAS priority in $OSG APP, but likely does
not care about the rest of the OSG VOs.

• It may be implemented inconsistently across sites. Some sites prefer VOs
do the installation from the worker nodes; others have $OSG APP read-
only from the worker nodes. VOs typically have to learn the idiosyncrasies
site-by-site, and there is little sharing between VOs. Also, when a new
site comes to OSG, the whole software package has to be installed for all
VOs the site intends to support.

• The site needs to create and maintain the special UNIX accounts.

• Common software are often installed in multiple places.

• Unless sites provide for dedicated WNs, or specific batch policies, instal-
lation jobs may need to wait in a queue.

• OSG provides no toolset for distributing software. Sites provide a writable
directory, but VOs may want higher level concepts such as “copy this file
to all accessible sites”.

2

A new mechanism, allowing the distribution of the new software after a single
installation, is desirable.

3 Architecture

The proposed architecture for OASIS is a server-client model. Installation is
performed once, at a central place, and the software is distributed automatically
to all sites.

The proposed architecture implies that software is installed in a single place
(or a reduced number of places), and that the software will be automatically
distributed to all sites. This dedicated area is otherwise immutable and will
not accept any other type of input, since the installation procedure requires
authentication and authorization in order to run jobs that update or modify
the software store.

The software and data deployed at the server is automatically distributed to
client sites. It would be desirable for the sites to run some type of replica (or
cache) service, to prevent all WNs to read directly from the server. Clients then
get the content from this site replica, preferably throught one or more Squid
caches [1].

Clients should trust content based on X509.

In principle, it would desirable to have an unique OASIS server, at a single
place, for all VOs. The proposal is the Grid Operation Center (GOC) to host
this OASIS server.

In case there are more than one OASIS server (because each VO wants to
run its own one, for example) then the OASIS clients will need to query period-
ically an external service to retrieve the update list of servers. This mechanism
may introduce unnecesary security implications, makes the OASIS client more
complex, and adds extra requirements. For example, the list of server sites (in-
cluding both multipurpose ones and VO specific) should have to be published.
If this approach is needed, the proposal is the GOC to include this informa-
tion as part of OIM. The OASIS client downloads that information periodically
and restart when new configuration arrives. Recommended tool to manage this
automatic configuration update is Puppet [2].

For this server client architecture, OASIS has to rely on some existing file
distribution. OASIS will not implement its own dedicated distributed filesystem
technology. The proposal for such underlying technology is CVMFS [3].

3

3.1 Server

3.1.1 Login

The proposed mechanism allows login via a gatekeeper. Only credentials carry-
ing a special VOMS attribute should be accepted. When a new VO is created,
the authentication and authorization mechanism in place at that site should
add the appropriate new accounts for that VO’s authorized managers. Each
VO manager’s credentials should be mapped to a different UNIX account, so
that their installation jobs do not interfere with those being performed by other
VOs. This also implies that, for new VOs, the corresponding UNIX account
must be created.

Optionally, if a special software area for common tools is to be shared be-
tween multiple VOs (like ROOT or GEANT for HEP communities, or BLAST
for Biocomputing communities), credentials with an special VOMS attribute
(shared by the VOs) maybe be needed. These credentials are mapped to a
dedicated UNIX account too.

The alternative would be that all UNIX accounts have permissions to write

in this common area. But in that case, when a VO is using their own service

and, therefore, is not allowed to use their own area at central OASIS server,

then it could not interact with this common area either.

Granting login to the server via ssh can be considered if it is required by a
given VO.

3.1.2 Access to sofware server area

There are three possibilities for the installation jobs to access the final software
area at the distribution service server:

• ssh access,

• the server is installed on the same host where the jobs are running,

• server and working node share a filesystem.

Recommended solution is the third one. First option is unnecesary and may
introduce extra complexities. Second option does not work in case of more than
one working host (for reliability reasons).

3.1.3 VO software installation and deployment

As mentioned, the login access to the central services is granted via a ded-
icated gatekeeper. The gatekeeper gives access to a local batch queue with
a very few nodes, managed by condor [5]. The installation includes a ded-
icated condor job wrapper script (pointed by condor configuration variable

4

USER JOB WRAPPER). Documentation on this wrapper script can be found
at [6].

This wrapper script can eventually perform a set of extra tasks, aimed ba-
sically to enforced the policies:

• Checks if there is enough space available for that VO to proceed,

• Can deny more installation tasks if there is very little free space.

• Checks how much left space is remaing after last installation. If it is 0 (or
very close), it will assume the VO went over-quota.

• If the installation job completed with success, and VO did not run over-
quota, performs an atomic publishing command.

• If the task did not succeed, can delete the files created during the failed
installation attempt.

• Writes a logbook recording information like: identity (DN), timestamp,
change in service catalog, results of the installation operations (success,
failed, over-quota, etc.) This logbook can be usefull for troubleshooting,
collecting usage statistics, etc.

If needed, that wrapper can check the VO the job belongs to and call a dedicated
vo wrapper with VO-specific tasks.

VO software installation and deployment operations can be split into two
separate steps. That means VOs would have to prepare two type of jobs: one
to install new software, and one to deploy it. In this scenario, we understand
by installation the process to install new files on a testing server. Policies on
this testing server can be more relaxed, allowing deleting files (or rolling back
previous installations), re-writing files, etc. The step of deployment implies
moving the new content into a production server. Policies here are more strict,
not allowing deletion or rewriting of existing files.

Every step being performed should be reported in the logbook service. This
will allow rolling back, for example, among other features.

The OASIS server package would include the necessary code to perform
these deployment operations, moving files from the testing repository to the
production one. This code can be the one enforcing quota policies, no deletion
policies, etc.

3.1.4 OASIS daemon

The proposal for the server includes a dedicated OASIS daemon in charge of
managing internal tasks (for example, running the CVMFS server publishing
scripts).

5

There are some operations can not be performed directly via grid job. The
reason is that some operations need to re-start some server services or daemons.
The new service is from that point on considered a child process belonging to
the grid job. Therefore, when the job finishes, the local batch system will kill
all these child processes too.

The proposed solution is to have a dedicated OASIS daemon running at the
server. The user jobs will leave messages to this OASIS daemon, which will
address the request and perform the required operations on behalf the user.
The communication between the user job and the OASIS daemon is done via
messages in a database. This database is created by the OASIS code itself
when it does not exist yet. Managing the database is done with python package
SQLAlchemy.

3.2 Client

The OASIS client will be distributed also as RPM. It will require the CVMFS
client to be already deployed as a dependency. The OASIS client RPM will place
the dedicated configuration file in the right directory (/etc/cvmfs/domain.d/),
will create /etc/cvmfs/default.local if does not exist, or will backup it otherwise.
The RPM will also copy the ssh public key into /etc/cvmfs/keys/ directory.

Sites will need to deploy the CVMFS client on every WN. In the future,
CVMFS client will be compatible with NFS, allowing having a single CVMFS
client and distributing the files over the network. But that feature is not yet in
place.

VO software should be then distributed at the sites under directory

/cvmfs/oasis.opensciencegrid.org/<myvo>/

However, given there may be VOs not interested on using OASIS, it would
be desirable to keep $OSG APP on the worker nodes.

On the other hand, even VOs migrating to OASIS service may have, for
historical reasons, the string $OSG APP hardcoded in their jobs software. In
that case, it would make sense, to avoid forcing them to change their code, to
create links at the sites from old $OSG APP area to the new OASIS one:

$OSG_APP/<myvo> -> /oasis/<myvo>/

6

4 Policies

4.1 Space quota

Each VO should be guaranteed a given amount of space when using the central
service provided by OSG. The amount of space granted to each VO is set by
the OSG Execute Team. If a VO needs additional space, it should consider the
deployment of its own, separate repository service. In that case, that VO should
not be allowed to have space at the central service (but would still be allowed
to manage the common area).

Enforcing the limit on space quota can be achieved at the level of filesystem
[4].

4.2 Content

Only software with public licenses can be deployed. The VOs must agree to
permit OSG the right to inspect the content of the software to ensure that their
software and data are in compliance with relevant rules and laws.

A dedicated area could be used to distribute the OSG WN middleware too.

4.3 Recommended procedures

In order to avoid inconsistencies between different replicas of the same file, it
would be desirable to prevent the deletion and/or rewriting of files at the code
source site.

If file deletion and re-writing are forbidden, all files must have a clear, well
defined version number to distinguish one version from another.

5 OASIS distribution

OSG will publish the packages (RPMs, configuration files, etc.) for the server
and, if needed, for the client.

There is a question to be solved. If the underlying technology used by
OASIS is CVMFS, how to proceed in case the site already have the CVMFS
client running, pointing to a different CVMFS server (for example, at CERN)?
Using the existing package implies OASIS can not stick with a frozen release
whne new features are not desired. In case of distributing a dedicated CVMFS
client package for OASIS, namespaces conflicts may occur.

7

Appendix A Experience

Appendix A.1 Motivation

In addition to gaining expertise, and to simply testing an existing set of tech-
nologies, one of the goals of this exercise was to determine how flexible the
CVMFS server installation could be: OSG desires to use the software as part of
its planned architecture to distribute software repositories, but to obfuscate the
underlying technology and unify its pieces under the OASIS project banner. For
example, on the CVMFS server, the default mount point for software storage
and distribution is /cvmfs; OSG would like to change this to /oasis. This was
suspected to be problematic, as no documentation existed to support such a
mount rename or relocation, and software configuration knobs to this effect are
sparse and also undocumented.

Appendix A.2 Infrastructure

Two virtual RHEL 6 nodes: one for the CMVFS client and one for the server.
A third node (RHEL 5 VM) was later added.

Appendix A.3 General Installation and Troubleshooting

The client installation went smoothly, after working through a few bugs with
packages and keys, but the server did not: a CVMFS server RPM is available
for RHEL 6, but it contains hidden dependencies for CVMFS RPMs that are
currently only available for EL 5: RedirFS, and a CVMFS kernel filter that
depends on RedirFS. RedirFS was installed from official source, which worked,
but compiling and installing the CVMFS RedirFS kernel filter failed due to a
parameter compatibility issue. The RedirFS and kernel filter modules were then
both built from the CVMFS source, but the kernel filter module still failed to
start with the same error.

After multiple troubleshooting sessions and conversations with the CVMFS
developers, a decision to revert to RHEL 5 for the server operating system was
made. The previous RHEL 6 VM originally allocated for the server compo-
nent was reconfigured as a CVMFS replica server. As with the CVMFS client
on RHEL 6 before, after making a few package setting adjustments, the in-
stallation of a CVMFS server on RHEL 5 was relatively simple; however, as
expected, the customization of the basic server mount point brought with it
many complications.

As a result of these findings, the customizations made to the current server
were reverted, and the default settings and locations were used for testing server
functions. To do so, the custom mount had to be destroyed, and two new ones
created to accommodate the default CVMFS server mount locations:

• /cvmfs for source sofware storage,

8

• /srv for CVMFS repositore storage.

It was also necessary to install a Squid repository on the client system (ide-
ally, this would be installed on its own host) that could interact with the replica
server as a cache to the client.

Appendix A.4 Installation details

The iptables firewall rules on all involved hosts must be modified in order to
enable traffic between the server, replica, cache, and client.

Appendix A.4.1 RHEL 5 server install

1. Install cvmfs-release from remote URL.

The cvmfs-release package is meant to automate installation of the
CVMFS yum repository file and public signing key; however, the package
is missing its own signing key and works only for Scientific Linux, not
RHEL or other Enterprise Linux clones. As such, to install the package
after downloading, override the default yum GPG key check:

yum --nogpgcheck install cvmfs-release-*.rpm

Afterward, replace the base URL in the yum repository file (/etc/yum.repos.d/cernvm.repo)
with the functioning URL.

2. Ensure adequate space in two directories/partitions:

• /cvmfs

• /srv

3. Install the yum packages necessary for installing the CVMFS server:

yum install cvmfs-server cvmfs-keys httpd redirfs \

kmod-redirfs cvmfsflt kmod-cvmfsflt

4. Test load the RedirFS and CVMFS kernel filter modules (no returned
output indicates a successful test):

modprobe redirfs && modprobe cvmfsflt

5. After installation, the file /etc/cvmfs/replica.conf, which is an artifact
of a package split, should be deleted.

9

Appendix A.4.2 CVMFS server and source repository configuration

1. Copy (/etc/cvmfs/server.conf) to a local override file (/etc/cvmfs/server.local)
for customization.
Note: this was done for testing purposes, which revealed that the desired
modifications to source and shadow directories created a problematic in-
stance. As a result, these customizations were rolled back to their defaults
in the current instance.

2. Create a new CVMFS server file system and repository structure:
cvmfs_server mkfs {repository}

3. Touch the otherwise unused master replica file (undocumented bug fix):
touch /srv/cvmfs/{repository}/pub/catalogs/.cvmfs_master_replica

4. Synchronize data from the software source directory to the mirror tree:
cvmfs-sync

5. Publish the repository:
cvmfs_server publish

6. Copy the public signing key generated by the CVMFS server for the repos-
itory from the server to both the replica and the client:
/etc/cvmfs/keys/{repository}.pub

7. Start the CVMFS server daemon to monitor future updates:
service cvmfsd start

8. Script/cron regular repository syncing and publishing:
/etc/cvmfs/cvmfs_publish.sh

#!/bin/#!/bin/bash

chown -R cvmfs.cvmfs /cvmfs/testrepo.racf.bnl.gov

cvmfs-sync >>/var/log/cvmfs/update.log

cvmfs_server publish >>/var/log/cvmfs/update.log

/etc/cron.d/cvmfs_publish

*/20 * * * * root /etc/cvmfs/cvmfs_publish.sh > /dev/null 2>&1

0 0 * * 0 root /usr/bin/cvmfs_server resign >>

/var/log/cvmfs/update.log 2>&1

Appendix A.4.3 RHEL 6 replica installation

1. Follow Step 1 of the server installation section to install the CVMFS repos-
itory file and public key.

10

2. Install the replica and Apache packages:
yum install cvmfs-replica cvmfs-keys httpd

3. Add an entry to the CVMFS repository mirror file (/etc/cvmfs/replica.repositories)
to point to the CVMFS server URL and repository path, signing key, and
local path:

testrepo.racf.bnl.gov|http://grid24.usatlas.bnl.gov:80

/cvmfs/testrepo.racf.bnl.gov|/etc/cvmfs/keys/testrepo.

racf.bnl.gov.pub|/var/cvmfs/testrepo.racf.bnl.gov/pub|32|10|3

4. Configure Apache to serve the repository replica:

• /etc/httpd/conf.d/cvmfs-replica.conf

RewriteEngine on

/opt/<experiment> is forced to be lower case:

RewriteMap toLower int:tolower

Automatically point to the catalogs:

RewriteRule ^/opt/([A-Za-z0-9\-\.]+)/(.*)$

/opt/${toLower:$1}/pub/catalogs/$2 [PT]

Translation URL to real pathname:

Alias /opt /var/cvmfs

Close access to non-pub directories

<DirectoryMatch /var/cvmfs/[A-Za-z0-9\-\.]+/(shadow|ctrl)>

Order allow,deny

Deny from all

</DirectoryMatch>

<Directory "/var/cvmfs">

Options Indexes -MultiViews FollowSymLinks

AllowOverride All

Order allow,deny

Allow from all

IndexOptions +SuppressDescription +FoldersFirst +VersionSort

+SuppressIcon

EnableMMAP Off

EnableSendFile Off

AddType application/x-cvmfs .cvmfschecksum .cvmfscatalog .x509 \

.cvmfspublished .cvmfswhitelist

FileETag INode MTime Size

ExpiresActive On

ExpiresDefault "access plus 3 days"

11

ExpiresByType text/html "access plus 5 minutes"

ExpiresByType application/x-cvmfs "access plus 15 minutes"

</Directory>

5. Restart Apache:
service httpd restart

6. Add a cron to update the local repository replica snapshot from the re-
mote source:

20 * * * * root /usr/bin/cvmfs_snapshot > /dev/null 2>&1

Appendix A.4.4 RHEL 6 cache installation

The ATLAS Frontier Squid package was installed to create a cache on the same
machine as the test client. After installing the software via RPM , a single mod-
ification to the default settings was necessary to enable Squid to serve CVMFS
content on the local network: in /etc/squid/customize.sh, edit the local ac-
cess control list definition to include the local machine itself , and the network
on which the replica and source server reside:
setoption("acl NET_LOCAL src", "127.0.0.1 130.199.0.0/16")

As a precaution, the default cache directory size was also increased from 10
GB to 40 GB:
setoptionparameter("cache_dir", 3, "40000")

The frontier-squid service was then restarted in order to enact these
customizations.

Appendix A.4.5 RHEL 6 client installation

1. Follow Step 1 of the server installation section to install the CVMFS repos-
itory file and public key.

2. Install the client packages:
yum install cvmfs cvmfs-init-scripts cvmfs-keys

3. Run the initial client configuration script:
cvmfs_config setup

4. Create the following configuration files and example content to point to
the new repository via the replica server (not the software source server):

• /etc/cvmfs/default.local

12

CVMFS_REPOSITORIES=testrepo.racf.bnl.gov

CVMFS_HTTP_PROXY="http://localhost:3128"

• /etc/cvmfs/domain.d/{domain-of-repository}.conf

CVMFS_SERVER_URL=${CERNVM_SERVER_URL:="http://grid22.racf.bnl.gov/opt/@org@"}

CVMFS_PUBLIC_KEY=/etc/cvmfs/keys/cern.ch.pub: \

/etc/cvmfs/keys/testrepo.racf.bnl.gov.pub: \

/etc/cvmfs/keys/cernit2.cern.ch.pub:/etc/cvmfs/keys/cern-it3.cern.ch.pub

• /etc/cvmfs/config.d/{repository}.conf

CVMFS_SERVER_URL=http://grid22.racf.bnl.gov/opt/testrepo.racf.bnl.gov

5. Restart CVMFS and autofs:
service cvmfs restartautofs

service cvmfs restartclean

6. Test the new client repository mount point:
ls la /cvmfs/{repository}

Appendix A.4.6 Confirmed Issues

According to developers, the current CVMFS server tools do not support main
mount point renaming or customization of any kind; they were written exclu-
sively to support the operations of creating and maintaining repositories in a
controlled environment at CERN. A rewrite of the server mechanism is under-
way and may be available for test soon.

Installing the CVMFS Release package cleanly requires a public signing key
that is not included with the package itself. The package creates a yum reposi-
tory file that is not platform-agnostic and requires a correction of the base URL
in order to function.

All recommended CMVFS package fixes and improvements have been for-
warded to the developers.

13

Appendix B Hardware requirements for CVMFS

The following comments describe the deployment of a CVMFS server at the
University of Wisconsin.

High availability can be achieved well enough by mirroring the repository.
cvmfs-pull can be used to do that every 3 hours and simply rely on the cvmfs
client to fail over, which mostly works, although a bug has been observerd in
client failover:

https://savannah.cern.ch/support/?131721

One could work around that by instead using reverse proxies in front of the
CVMFS server to handle failover.

To ensure against loss of data, one possible architecture is:

• disk 1: contains writeable copy of the repository maintained by OSG VOs

• disk 2: contains the shadow tree, maintained by running rsync against
writeable copy

• disk 3: contains the web files published by cvmfs

If disk 1 and 2 were both lost, data can be recovered from disk 3 (or the
mirror), but ownership of files would have to be restored by some other means,
because everything in the published repository is owned by the cvmfs user,
whereas the file trees in disk 1 and 2 are owned by the various software main-
tainers (VO accounts) that manage the files in OSG APP.

Since the web proxies do most of the work of serving data to clients, a cvmfs
server could mostly be just occupied with running the periodic rsync and cvmfs
publication. For a O(200G) file tree, this takes about half an hour on hardware
like this:

2x Dual-Core AMD Opteron(tm) Processor 2212

16GB RAM

3x 1TB 7200rpm disks

References

[1] http://www.squid-cache.org/

[2] http://puppetlabs.com/

[3] http://cernvm.cern.ch/portal/filesystem/

[4] http://www.yolinux.com/TUTORIALS/LinuxTutorialQuotas.html

14

[5] http://research.cs.wisc.edu/condor/

[6] http://research.cs.wisc.edu/condor/manual/v7.6/3 3Configuration.html#19134

15

	Introduction
	Background
	Architecture
	Server
	Login
	Access to sofware server area
	VO software installation and deployment
	OASIS daemon

	Client

	Policies
	Space quota
	Content
	Recommended procedures

	OASIS distribution

	Experience
	Motivation
	Infrastructure
	General Installation and Troubleshooting
	Installation details
	RHEL 5 server install
	CVMFS server and source repository configuration
	RHEL 6 replica installation
	RHEL 6 cache installation
	RHEL 6 client installation
	Confirmed Issues

	Hardware requirements for CVMFS

